CTF: better for the environment (and farm income)

Examples from Australian Grain Production

Jeff Tullberg

Australian Controlled Traffic Farming Association CTF Solutions, University of Queensland, University of Southern Queensland.

CTF 2015, Prague, CTF Europe.eu

Australian (v. European) Grain

Most production in semi-arid areas.

Low cost systems; often low yields.

Large farms, minimum labour, large equipment

Australian (v. European) Grain

Most production in semi-arid areas

Yield is water-limited. Rain is scarce, but

Occasional high-intensity* storms cause **Disastrous** Soil erosion.

- CTF: A way to reduce fuel use?
- **CTF:** A better system of Conservation Agriculture
- Permanent crop zones
 managed for optimal soil/crop performance and
- Permanent traffic zones (<15% area)
 managed for optimum machine performance.

Requirements

- •All heavy wheels precisely on permanent traffic lanes.
- •Traffic lane layouts designed for optimum drainage and logistics.

CTF 2015, Prague, CTF Europe.eu 10 - 25% of Australian Grain Production

Energy effects of CTF

Non-wheeled CTF soil is easier to till and plant.

Less fuel used for tillage and planting (25-50%)

Less rolling resistance on hard permanent traffic lanes

Less fuel for spraying (1/2-1 I/ha), harvesting (2-3 I/ha)

Impact:

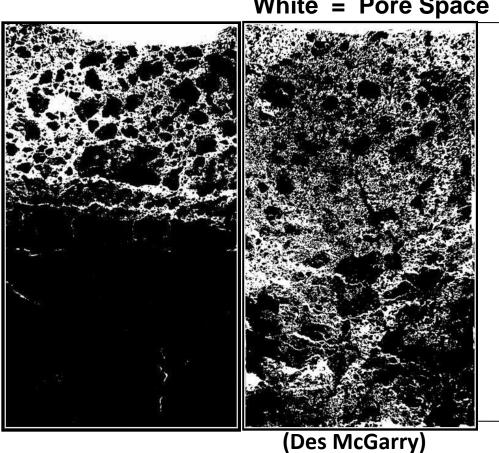
Fuel Use

>50 l/ha Tillage-systems

~25 I/ha No-Till systems

<15 I/ha Precision CTF

CTF 2015, Praguesoil impact is greater u


CTF Impact on Soil : Profile Images

Heavy clay vertosol after 4 years no-till grain production

Black = Soil Solids, White = Pore Space

Annually Wheeled (5t Tractor)

Min. Porosity, Aeration, Infiltration & Soil life

Non-Wheeled (4- Year CTF)

24 cm

Porosity to depth from roots, biota, shrink/swell

CTF 2015, Prague, CTF Europe.eu Soil Porosity: large environmental & economic impacts

Environmental Impact- CTF Soil

15-50% less runoff in many conditions

Less loss of Soil, Nutrients, Pesticides.

Less Waterway Pollution (N & P)

N. American Great Lakes

Australian Great Barrier Reef

CTF 2015, Prague, CTF Europe.eu

Environmental Impact-CTF Soil

15-50% less runoff in many conditions

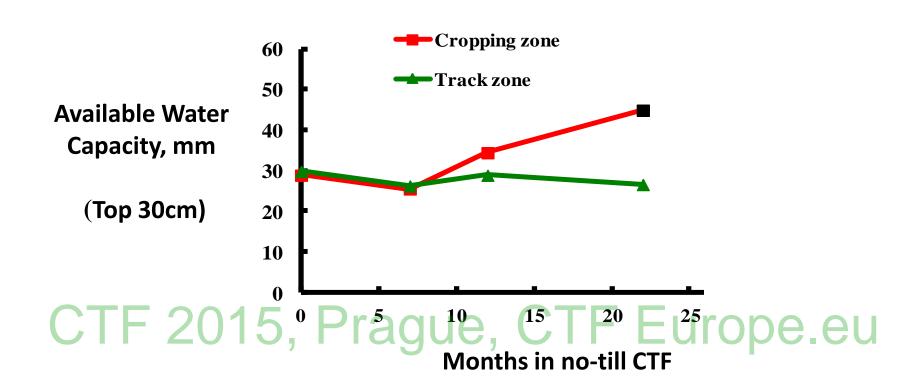
Better internal drainage.

Less time Near-Waterlogged-

Less loss of Nitrogen as gas (denitrification).

 N_2O emissions from Wheeled soil = 5×6 missions

Overall CTF effect on N_2O e.g. = $1 \text{kg } N_2O/\text{ha.year}$


(powerful greenhouse effect) = $300 \text{kg CO}_2 \text{e/ha.year}$

N₂O is only 2-5% of total N loss TF Europe.eu

Economic Impact - CTF Soil

More Available Water: 20-40% effects

Greater yields (10-15%)

Economic Impact -CTF Soil

More Available Water: 20-40% effects

Greater yields (10-15%)

Less time Near-Waterlogged

= Less N loss in: Denitrification $(30 \times N_2O)$

Runoff & Leaching

CTF Grower statements: 15-30% less N, P CTF 2015, Prague, CTF Europe.eu

CTF System: often the Greatest Impact

More Timely Operation + More Available Water

- = More or better crop yields + biomass
- = More soil protection + potential Carbon

Greater Precision + Timeliness

- = New residue & weed options
- e.g. Interrow seeding, spraying.

Excellent fit with no-till

All good for the Environment, and Farm Incomes

One example: Harvesting sooner after rain

and a Planting Opportunity

Minimum opportunity for weeds and moisture loss

CTF: A better system of Conservation Agriculture CTF 2015, Prague, CTF Europe.eu Reference material in many publications. www.actfa.net

Different Environments = Different Opportunitiesbut many of the same principles will apply

CTF 2015, hank, You Europe.eu